Analytical Chemistry Lecture 5 by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS

Buffer solutions

Definition "Solutions which resist changes in pH when small quantities of acid or alkali are added."

a solution that contains a weak acid/conjugate base mixture or a weak base/conjugate acid mixture

 able to neutralize acids and bases without allowing the pH of the solution to change greatly

Acidic Buffer (pH < 7) made from a weak acid (ethanoic acid) + its sodium or potassium salt (sodium ethanoate)

Alkaline Buffer (pH > 7) made from a weak base (ammonia) + its chloride salt (ammonium chloride)

Uses

- Standardising pH meters
- Buffering biological systems (eg in blood)
- Maintaining the pH of shampoos

Buffers and the Common-ion Effect

A buffer works through the common-ion effect.

Acetic acid in water dissociates slightly to produce some acetate ion:

 $CH_{3}COOH(aq) + H_{2}O(l) \iff CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$ acetic acid acetate ion

If CH_3COONa is added, it provides a source of CH_3COO^- ion, and the equilibrium shifts to the left. CH_3COO^- is *common* to both solutions.

The addition of CH_3COO^2 reduces the % dissociation of the acid.

Buffers

- A buffer consisting of a mixture of the weak acid(CH₃COOH) and its salt (CH₃COONa⁺), and Will undergo the following changes on the addition of acid or base:
- If the base is added (⁻OH) to the solution it will be buffered by the following reaction with acetic acid:
 - $CH_3COOH + -OH \rightarrow CH_3COO^- + H_2O$ So the pH will not change significantly

Buffers

- If acid (H⁺) is added, it will be buffered by another reaction, this time using the salt (CH₃COO⁻): CH₃COO⁻ + H⁺ → CH₃COOH The pH will not alter significantly because the CH₃COOH formed is a weak acid
- Addition of more base increases A⁻ and decreases (HA) and this doesn't alter the pH much until [A⁻]>>>[HA]

The buffering power is greatest when pH=pKa, i.e. when the acid and the salt are at the same concentration

How a Buffer Works

The buffer components (HA and A⁻) are able to consume *small* amounts of added OH⁻ or H₃O⁺ by a shift in equilibrium position.

 $CH_{3}COOH(aq) + H_{2}O(l) \rightleftharpoons CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$

Added OH^{-} reacts with $CH_{3}COOH$, causing a shift to the right.

Added H_3O^+ reacts with CH_3COO^- , causing a shift to the left.

The shift in equilibrium position absorbs the change in $[H_3O^+]$ or $[OH^-]$, and the pH changes only slightly.

$$HA(aq) \Longrightarrow H^+(aq) + A^-(aq)$$

Ratio [HA]/[A⁻] does not increase very much. Ratio [HA]/[A⁻] does not decrease very much.

Effect of added H^+ or OH^- on a buffered system.

Cengage Learning. All Rights Reserved

in buffer solution with HA & A-:

- addition of H⁺
 neutralization:
 H⁺ + A⁻ → HA
- [HA] increases slightly

 [A⁻] decreases slightly
 [HA]/[A⁻] increases
 [H⁺] increases
 pH decreases

- addition of OH⁻
 neutralization:
 OH⁻ + HA → A⁻ + H₂O
- [HA] decreases slightly
 [A⁻] increases slightly
 [HA]/[A⁻] decreases
 [H⁺] decreases
 pH increases

Buffer Action

Buffer action occurs as

- the weak acid in a buffer neutralizes base.
- the conjugate base in the buffer neutralizes acid.
- the pH of the solution is maintained.

Alkaline buffer solutions - action

Alkaline buffer

Very similar but is based on the equilibrium surrounding a weak base; AMMONIA

 $\begin{array}{rcl} \mathsf{NH}_3(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) & \Longrightarrow & \mathsf{OH}^-(\mathsf{aq}) + \mathsf{NH}_4^+(\mathsf{aq}) \\ \mathsf{relative\ concs.\ HIGH} & & \mathsf{LOW} & \mathsf{LOW} \end{array}$

but one needs;

a large conc. of $OH^{-}(aq)$ to react with any $H^{+}(aq)$ added a large conc of $NH_{4}^{+}(aq)$ to react with any $OH^{-}(aq)$ added

There is enough NH_3 to act as a source of OH^- but one needs to increase the concentration of ammonium ions by adding an ammonium salt.

Use AMMONIA (a weak base) + AMMONIUM CHLORIDE (one of its salts)